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MAXIMUM LIFT-TO- DRAG RATIOS

OF SLENDER, FLAT-TOP, HYPERSONIC BODIES ¢

PART 1
by

ANGELO MIELE ™) and DAVID G. HULL ™)

SUMMARY 59 5

An investigation of the lift-to-drag ratio attainable by a slender, flat-top, homo-
thetic body flying at hypersonic speeds is presented under the assumptions that the
pressure distribution is Newtonian and the skin-friction coefficient is constant.

It is shown that a value of the thickness ratio exists such that the lift-to-drag

ratio is a maximum; this particular value is such that the friction drag is one-third
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of the total drag. The subsequent optimization of the longitudinal and transversal

contours is reduced to the extremization of products of powers of integrals related

to the lift, the pressure drag, and the skin-friction drag. For the longitudinal

contour, the variational approach shows that a conical solution is the best. For

the transversal contour, a triangular configuration satisfies the Euler equation

for every cross-sectional elongation ratio u; it satisfies the Legendre condition

for 0 <u < 0.65 but violates it in the neighborhood of the plane of symmetry for

0.65 <u < 1. The lift-to-drag ratio of the optimum conical body of triangular

cross section increases as the elongation ratio of the cross section decreases; for

o . -3 .
a friction coefficient Cf =10 ~, the highest attainable lift-to-drag ratio is E = 5.29.
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1. INTRODUCTION

In a previous report (Ref. 1), an investigation of the lift-to-drag ratio attainable
by a slender, flat-top, homothetic body at hypersonic speeds was presented under
the assumption that the pressure distribution is Newtonian and the skin-friction

coefficient is constant. Direct methods were employed,and the analysis was confined

to the class 6f bodies whose longitudinal contour is a power law and whose transversal
contour is semielliptical or triangular. For these special bodies, the lift-to-drag

ratio depends on three parameters: the thickness ratio, the exponent of the power

law, and the elongation ratio of the cross section. Therefore, by means of the ordinary
theory of maxima and minima, the combination of parameters maximizing the lift-to-
drag ratio can be found.

In this report, the limitations set forth in Ref. 1 are removed and the indirect

methods of the calculus of variations are employed in order to determine the optimum

longitudinal and transversal contours. The hypotheses employed are as follows: (a) a

plane of symmetry exists between the left-hand and right-hand sides of the body; (b) the
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upper surface of the body is flat (reference plane); (¢) the base plane is perpendicular
to both the planc of symmetry and the reference plane; (d) the body is slender in the
longitudinal sense, that is, the squarc of the slope of any meridian contour is small
with respect to one; (e) the body is homothetic, in the sense that each cross section

is geometrically similar to the base cross section and has the same orientation; (f) the
free-stream .velocity is perpendicular to the base plane and, therefore, is parallel

to the line of intersection of the plane of symmetry and the reference plane; (g) the
pressure coefficient is twice the cosine squared of the angle formed by the free-stream
velocity and the normal to each surface clement; (h) the skin-friction coefficient is
constant; and (i) the contribution of the tangential forces to the lift is negligible with

respect to the contribution of the normal forces.
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2. DRAG AND LIFT

We consider the class of flat-top bodies and define two coordinate systems
(Fig. 1): a Cartesian coordinate system Oxyz and a cylindrical coordinate system
Oxrf. For the Cartesian coordinate system, the origin O is the apex of the body;
the x-axis is the intersection of the plane of symmetry and the reference plane,
positive toward the base; the z-axis is contained in the plane of symmetry, perpendi-
cular to the x-axis, and positive downward; and the y-axis is such that the xyz-system
is right-handed. For the cylindrical coordinate system, r is the distance of any
point from the x-axis, and © measures the angular position of this point with respect
to the xy-plane.

Next, we focus. our attention on those bodies r(x, 8) such that any transversal
contour is geometrically similar to that of the base and has the same orientation. The

geometry of these homothetic bodies is given by (Ref. 1)

r = Y(1/u) A(%) B(O) @

where % denotes the length and where
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.- r(&,&W/Z) ’ U = rr(:;},u'WO/)Z) (2)

are the thickness ratio and rhc e'engation ratio, respectively; also, & =x/{ is a
nondimensional abscissa, A(f) a fuaction describing the longitudinal contour such
that

A@©) = 0, Al =1 3)

and B(6) a function describing the transversal contour such that

B@O) =1, B(/2) = u 4)

With this understanding and in the light of the hypotheses of the introduction, the drag

and the lift can be rewritten as (Ref. 1)

T4I

2 —
D/q{, 1]1 + Cf [ 12J2

®)

L/qt? = P13,

In Egs. (5), the positive quantities I} , Iy, I3 are defined as




I_YIAA ar . L=0ade ., L= aklar
_’0 ’ -110 > s 3 ‘b N

where A = dA/d®. Also, the positive quantities ]1 , ]2 , ]3 are defined as

1= @KL T @A, Ty = @0k,

where
T/ 2 .
72682 + 52y as
1 20
/2
K, =" To/m+ 2+ /%
TT/Z . 7 .
K, = :ro rB4/(B2 +B2) (Bsin 8 - Bcos 6) d®
and B = dB/d8.

AAR-10
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(M
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3. LIFT-TO-DRAG RATIO

From the previous formulas, it appears that -- if the length 4, the thickness
ratio 7, the longitudinal contour A (F), and the transversal contour B(8) are given
-- the drag and the lift can be evaluated from Eqgs. (5) through (8). Once these
quantities are known, one can determine the aerodynamic efficiency or lift-to-drag
ratio
E = L/D )

which, in the light of Eqs. (5), can be written as

E = 121303 /(31 I} + Cp Ip)p ) (10)
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4. OPTIMUM THICKNESS RATIO

We now assume that the longitudinal contour A(E) and the transversal contour

B(6) are arbitrarily prescribed, and study the effect of the thickness ratio Ton the

lift-to-drag ratio (10). Clearly, the lift-to-drag ratio is an extremum when the

thickness ratio satisfies the relationship

E_=0 (11)

whose explicit form

/I =TT Gy i) = 0o I 7K (12)

means that the friction drag is one-third of the total drag. The associated lift-to-drag

ratio is given by

33— _3 3, 2 3,20 _ 3/,.3,.2 3,2
£3C, =Yluren a3 /11y = /%) ol iy ke (13)
and is a maximum owing to the fact that

Err = ~(2/3 Cp (/L) (J/1,) = - (4/3u°C)) (I,/1)) (K,/K ) <0 (14)
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5. OPTIMUM LONGITUDINAL CONTOUR

Next, we consider bodies optimizad with respect to the thickness ratio 7, assume
that the transversal contour B(?) is arbitrarily prescribed, and study the effect of
the longitudinal contour A () on the lift-to-drag ratio (13). Since the lift-to-drag

ratio depends on the longitudinal contour through the expression

I = 1.1

2
3 I, (15)

1

we formulate the following p-oblem: "In the class of functions A (8) which satisfy the
end conditions (3), find that particular function which extremizes the functional (15),
where the integrals 1, 1,, I; are defined by Egs. ©6)."

The functional (15) is a product of powers of integrals whose end points are
fixed and is governed by the theory set forth in Ref. 2. In this reference, it is shown

that the previous problem is equivalent to that of extremizing the integral

~ 1 .
I = IO F(A, A, A, }9)d® (16)

where the fundamental function is defined as
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F = AAZ - xlA3 - 1) (17)

and the undetermined, constant Lagrange multipliers are given by

A =2L/3L L %, =L/3L (18)

Since the fundameatal function does not contain the independent variable
explicitly, standard methods of the calculus of variations show that the Euler

equation
dFA/di- FA=0 (19)

admits the following first integral (see, for instance, Chapter 1 of Ref. 3):

F-AF; =C (20)

whose explicit form is

=C (21)
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Upon integrating Eq. (21) over the range 0, 1 and accounting for the definitions (6),

we obtain the relationship
1 -L -)21 =C 2
2)\] ] 3 ( 2)

which is consistent with Eqs. (18) providing the integration constant has the value

C=0 (23)

2xlA3-A S =0 (24)

and implies that

A=C (25)

where Cl is a constant. Upon integrating this differential equation, we obtain

the relationship

A=CE+C (26)
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where, because of the end conditions (3), the constants take the values

and, therefore, is conical. For this cone, the integrals (6) take the values
I. =1 =1,=1/2
and the Lagrange multipliers (18) are given by

)\l =2/3 , Xz =1/3

Finally, the optimum thickness ratio (12) and the lift-to-drag ratio (13) become

3— 35— 3= 3/3 2
T/«/Cf—uJKz/Kl , EA/cf—(z/s) K3/K1K2

Incidentally, the solution obtained maximizes the lift-to-drag ratio, owing to the
fact that

FAA = 2A(l-3)\lA) =-28<0

27)

(28)

(29)

(30)

(31)

(32)
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6. OPTIMUM TRANSVERSAL CONTOUR

Finally, we consider configurations optimized with respect to the thickness
ratio 7 and the longitudinal contour A (£), and study the effect of the transversal
contour B(0) on the lift-to-drag ratio (31-2). Since the lift-to-drag ratio depends

on the transversal contour through the expression

—_— 7 3 /2

we formulate the following problem: "In the class of functions B(8) which satisfy
the end conditions (4), find that particular function which extremizes the functional
(33), where the integrals K, K9, K3 are defined by Egs. 8)."

For each given elongation ratio u, the functional (33) is a product of powers
of integrals whose end points are fixed and is governed by the theory set forth in
Ref. 2. Therefore, the previous problem is equivalent to that of extremizing the
integral

” 7/ 2 .
K = JO F(ei B) B’ >\l; >\2)('.19

(33)

(34)
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where the fundamental function is defined as

. . . 2.1
F=[8*/@% + 5] @ sin 6 - Bos 0) -1 [B%/@ + )] -\ Josme @ + /7] (35)
and the undetermined, constant Lagrange multipliers are given by

>\l=2K3/3Kl y A =K3/3K2 (36)

2

The extremal solution is described by the Euler equation

dFy/d8 - Fy =0 (37)

which, in explicit form, is given by

) . 2 .
. lPl(B,B)+>\2P2(B,B) P3(6,B,B) (38)

1, Q (B, B) +2,Q,(B,B) + QVS(B,B, B)

where

P, = 2134(2134 +78%8 + 9}34)

P, = @ + 21'32) @ + 1'32)3/ 2 (39)

4 . 3 )
P = -28 [(B + 58282 + 88%) B sin 0 + (8% + B%8?

3 - 4ﬁ4) B cos 9]
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and
. 2
Q1 = 2B5(3B2 -B)

Q, = B(B2 + 1'32)3/ 2 (40)

Q, = 2B’ f(B2 _ 38%) B sin 6 - (38% - B%) B cos e:{

There is no mgthod known to these authors for obtaining the general integral of

this differential equation and, as a consequence, numerical integration is necessary.
Prior to undertaking this task, these authors have investigated the possibility that
the family of triangular contours described by

B =u/(sin & +u cos H) (41)

(*)

might be a particular solution® . That this is the case can be shown with the
following reasoning. First of all, the triangular contours (41) satisfy the end

conditions (4). Next, the evaluation of the integrals (8) yields the relationships

Kl =u3/(l +u2) , K2 =1+,/1 —‘ru2 , K3 = uz/(l +u2) (42)

*)

The excellent aerodynamic qualities of the bodies of triangular cross

section are suggested by the analysis of Ref. 1.
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so that the Lagrange multipliers (36) are given by

=230, = 230+ @ +/1+ 0
Then, by direct substitution into Eq. (38), it can be verified that the assumed
optimum contour (41) and the associated multipliers (43) reduce this Euler
equation to an identity regardless of the cross-sectional elongation ratio .
Consequently, the thickness ratio and the lift-to-drag ratio become (Figs.

2 and 3)

T/35;=%+u2) @+ +0?)

E3/'C_f =2/33/(1—+ uz) a+./1 -:-u2 )

Incidentally, the solution obtained maximizes the lift-to-drag ratio providing the

Legendre condition

e L w23 : ) ..
FBB_ B(B” + B") [)‘IQI(B’B)+>\2Q2(B»B)+Q3(6,B,B)]_0

is satisfied at every point of the extremal arc. After Eqs. (40), (41),and (43) are

accounted for, it can be verified that Ineq. (45) is satisfied everywhere if the

(43)

(44)

(45)



s
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cross-sectional elongation ratio is in the range 0 <11 <0.6511. For larger values
of the elongation ratio, Ineq. (45) is violated in the neighborhood of the final point;
hence, a triangular cross section cannot be optimal in the range 0.6511 <y < 1.

A further investigation is needed and is to be presented in a forthcoming report

(Part 2).
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7. DISCUSSION AND CONCLUSIONS

In the previous sections, the optimization of the lift-to-drag ratio of a slender,

flat-top, homothetic body flying at hypersonic speeds is presented under the

assumptions that the pressure distribution is Newtonian and the skin-friction

coefficient is constant.

It is shown that a value of the thickness ratio exists which maximizes the

lift-to-drag ratio; this particular value is such that the friction drag is one-third

of the total drag. The subsequent optimization of the longitudinal and transversal

contours is reduced to the extremization of products of powers of integrals related

tothe lift, the pressure drag, and the skin-friction drag. For the longitudinal

contour, the variational approach shows that a conical solution is the best. For

the transversal contour, a triangular cross section satisfies the Euler equation

for every cross-sectional elongation ratio u; it satisfies the Legendre condition

for 0 <y <0.6511 but violates it in the neighborhood of the plane of symmetry for

0.6511 =y<1.
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It is of interest to check the lift-to-drag ratios attainable with conical bodies
of triangular cross section against those attainable with conical bodies having

different cross-sectional contours, specifically:

(a) B=1- (1-u) sin 8

(b) B=u/. sin29 + u2 cos2 8
() Bsin 8 =u (1-B cos )™
() B sin @ = u[l— (B cos e)m]

where (a) denotes a sinusoidal contour, (b) denotes an elliptical contour, and

(c) and (d) are power law contours. Numerical analyses performed at Rice Uni-
versity with an IBM 7040 Digital Computer show that, for each given clongation ratio
in the range 0 <u <1, the body of triangular cross section is aerodynamically
superior to the bodies (a) and (b). It is also superior to the body (¢) regardless

of the exponent m. An analogous remark holds for the body (d) as long as the
elongation ratio does not approach the value u = 1. For values of u in the
neighborhood of 1, an exponent m can be found such that the lift-to-drag ratio of

the body of triangular cross section and that of the body (d) differ by only the

(46)
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fourth significant figure. Thus, even though the body of triangular cross section
does not meet all the requirements of the calculus of variations in the range
0.6511 <y <1, it exhibits excellent aerodynamic characteristics by comparison
with the bodies (a) through (d). For this reason, while the present investigation is
to be completed in a forthcoming report, it is probable that the lift-to-drag ratio
of the true variational solution will not differ substantially from that of the body of
triangular cross section.

In closing, the following comments are pertinent:

(a) The lift-to-drag ratio of the body of triangular cross section increases
as the elongation ratio decreases and achieves its highest value E‘,%/C—f =0.529
atu =0, correspondmg to a thickness ratio in T/%; =0.126. This limiting
result, obviously to be interpreted with a grain of salt, means that wing-like
configurations rather than body-like configurations are aerodynamically desirable
at hypersonic speeds. It is clear that a practical vehicle can only be constructed

by replacing the mathematical solution u = 0 with a neighboring value, for instance,

u=0.2. As Fig. 3 shows, the loss in the lift-to-drag ratio is small.
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(b) The conical bodies of triangular cross section exhibit sharp corners at

8 =0 and A8 =1/2. Hence, their main drawback is the severe heat transfer occurring

at the lines of intersection between the surfaces composing the vehicle. Consequently,

the present sharp-edge configurations must be replaced by faired configurations in

which the transistion from one surface to another occurs with a finite curvature.

If this is done, lift-to-drag ratios smaller than those predicted here are to be

expected.




23 AAR-10

REFERENCES

MIELE, A., Lift-to-Drag Ratios of Slender Bodies at Hypersonic Speeds,

Rice University, Aero-Astronautics Report No. 9, 1965.

MIELE, A., Extremization of Products of Powers of Functionals, Rice

University, Aero-Astronautics Report No. 12, 1966.

MIELE, A., Editor, Theory of Optimum Aerodynamic Shapes, Academic

Press, New York, 1965.



Fig. 1

Fig. 2

Fig. 3
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LIST OF CAPTIONS

Coordinate system.

Thickness ratio of conical bodies of triangular cross section.

Lift-to-drag ratio of conical bodies of triangular cross section.
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